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Part 1: Motivation (5 minutes)

0 Performance engineering and productivity

3 Role of performance knowledge

0 “Extreme” performance engineering

Part 2: TAU Performance System (15 minutes)

3 Overview

3 Description of main components

Part 3. Experiences (20-25 minutes)

J Performance data mining (NWChem)

0 Hybrid/heterogeneous performance analysis (MPAS-O, XGC)
0 Communication/computation optimization (IRMHD)
J Understanding performance variability (CESM)

0 Empirical autotuning

Part 4: Perspectives (5 minutes)
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Parallel Performance Engineering

B ——

0 Scalable, optimized applications deliver HPC promise

0 Optimization through performance engineering process
O Understand performance complexity and inefficiencies
O Tune application to run optimally on high-end machines

0 How to make the process more effective and productive?
O What is the nature of the performance problem solving?
O What 1s the performance technology to be applied?

0 Performance tool efforts have been focused on performance
observation, analysis, problem diagnosis

O Application development and optimization productivity
O Programmability, reusability, portability, robustness
O Performance technology part of larger programming system
0 Parallel systems evolution will change process, technology, use
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Parallel Performance Engineering Process
——

0 Traditionally an empirically-based approach
observation <= experimentation <> diagnosis <= tuning

0 Performance technology developed for each level

Performance Performance
Tuning Technology
Performance hypotheses | / el
Technology Performance * Models
+ Experiment Diag‘ nos 5 I Expert systems
management properties , Performance
 Performance Performance Technology
storage ) Exper in?fntat ion o Instrumentation
characterization | e Measurement
Performance  Analysis
Observation * Visualization
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Application-specific Performance

B ——

0 What will enhance productive application development
with a goal improve performance optimization?

0 Current performance engineering process decouples the
application from the performance analysis

O Little sharing of application knowledge with the tools

0 Performance engineering process and tools must be more
application-aware

0 Support application-specific performance views
O What are the important events and performance metrics?

O How are these tied to the application structure and
computational model?

O How can knowledge about the application domain and
algorithms be used to improve performance understanding?
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Need for Whole Performance Evaluation

B ——

10 Extreme scale performance 1s an optimized orchestration
O Application, processor, memory, network, 1/0

0 Reductionist approaches to performance will be unable to
support optimization and productivity objectives

0 Application-level only performance view 1s myopic
O Interplay of hardware, software, and system components
O Ultimately determines how performance is delivered
0 Performance should be evaluated in tofo
O Application and system components
O Understand effects of performance interactions
O Identify opportunities for optimization across levels

0 Need whole performance evaluation practice
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Role of Intelligence, Knowledge, and Automation
T ———— T ————

0 Increased performance complexity forces the engineering
process to be more intelligent and automated

O Automate performance data analysis / mining / learning

O Automated performance problem identification

0 Performance engineering tools and practice must
incorporate a performance knowledge discovery process
0 Model-oriented knowledge
O Computational semantics of the application
O Symbolic models for algorithms

O Performance models for system architectures / components

0 Application developers can be more directly involved in
the performance engineering process
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“Extreme” Performance Engineering

0 Empirical performance data evaluated with respect to
performance expectations at various levels of abstraction
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TAU Performance System® (http://tau.uoregon.edu)

7 Tuning and Analysis Utilities (20+ year project) %

d Performance problem solving framework for HPC
O Integrated, scalable, flexible, portable
O Target all parallel programming / execution paradigms
0 Integrated performance foolkit
O Multi-level performance istrumentation
O Flexible and configurable performance measurement
O Widely-ported performance profiling / tracing system
O Performance data management and data mining

O Open source (BSD-style license)

0 Broad use in complex software, systems, applications
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General Target Computation Model in TAU
0 Node: physically distinct shared memory machine
O Message passing node interconnection network
O Context: distinct virtual memory space within node

0 Thread: execution threads (user/system) in context

Interconnection Network s Inter-node message
communication

Context Threads
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TAU Observation Methodology and Worktlow
e ——— e

0 TAU’s methodology for parallel performance observation
is based on the insertion of measurement probes into
application, library, and runtime system code

O Code 1s instrumented to make visible certain events
O Performance measurements occur when events are triggered
O Known as probe-based (direct) measurement
0 Performance experimentation workflow
O Instrument application and other code components
O Link / load TAU measurement library
O Execute program to gather performance data
O Analysis performance data with respect to events

O Analyze multiple performance experiments
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0 Parallel performance framework and toolkit

0 Software architecture provides separation of concerns
O Instrumentation | Measurement | Analysis

| TAU Architecture |

/Instrumentatlon Measurement Analysis N

Source

o C, C++, Fortran

o Python, UPC, Java

o Robust parsers (PDT)

Wrapping
> Interposition (PMPI)
o Wrapper generation

Linking
o Static, dynamic
o Preloading

Executable
© Dynamic (Dyninst)
o Binary (Dyninst, MAQAO)

Measurement AP|
Measured data
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TAU Components
e ——— e

O Instrumentation
O Fortran, C, C++, Python, Java, UPC, Chapel
O Source, compiler, library wrapping, binary rewriting
O Automatic instrumentation
0 Measurement
O Internode: MPI, OpenSHMEM, ARMCI, PGAS, DMAPP
O Intranode: Pthreads, OpenMP, hybrid, ...
O Heterogeneous: GPU, MIC, CUDA, OpenCL, OpenACC, ...
O Performance data (timing, counters) and metadata
O Parallel profiling and tracing (with Score-P integration)
O Analysis
O Parallel profile analysis and visualization (ParaProf)
O Performance data mining / machine learning (PerfExplorer)
O Performance database technology (TAUdb)
O Empirical autotuning
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TAU Instrumentation Approach
—_—

0 Direct and indirect performance instrumentation
O Direct instrumentation of program (system) code (probes)
O Indirect support via sampling or interrupts
0 Support for standard program code events
O Routines, classes and templates
O Statement-level blocks, loops
O Interval events (start/stop)
3 Support for user-defined events
O Interval events specified by user
O Atomic events (statistical measurement at a single point)
O Context events (atomic events with calling path context)
O Provides static events and dynamic events

O Instrumentation optimization
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TAU Instrumentation Mechanisms

B ——

3 Source code
O Manual (TAU API, TAU component API)
O Automatic (robust)
> C, C++, F77/90/95, OpenMP (POMP/OPARI), UPC
O Compiler (GNU, IBM, NAG, Intel, PGI, Pathscale, Cray, ...)
3 Object code (library-level)

O Statically- and dynamically-linked wrapper libraries
> MPI, I/O, memory, ...

O Powerful library wrapping of external libraries without source
0 Executable code / runtime

O Runtime preloading and interception of library calls

O Binary mstrumentation (Dyninst, MAQAOQO, PEBIL)

O Dynamic instrumentation (Dyninst)

O OpenMP (runtime API, CollectorAPI, GOMP, OMPT)

0 Virtual machine, interpreter, and OS instrumentation
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Instrumentation for Wrapping External Libraries

B ——

O Preprocessor substitution
O Header redefines a routine with macros (only C and C++)
O Tool-defined header file with same name takes precedence
O Original routine substituted by preprocessor callsite

O Preloading a library at runtime

O Library preloaded in the address space of executing application
intercepts calls from a given library

O Tool wrapper library defines routine, gets address of global
symbol (dlsym), internally calls measured routine

0 Linker-based substitution
O Wrapper library defines wrapper interface which calls real routine

O Linker 1s passed option to substitute all references from
applications object code with tool wrappers
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Automatic Source-level and Wrapper Instrumentation

PDT source Application
analyzer source
Parsed
programm J > tau instrumentor
Instrumented
source
— tau_wrap - <
BEGIN FILE EXCLUDE LIST
£*.£90
BEGIN EXCLUDE LIST Foo?.cpp
Foo END FILE EXCLUDE LIST
Bar BEGIN FILE INCLUDE LIST
D#EMM main.cpp
END EXCLUDE LIST foo.£f90

END_FILE_INCLUDE_LISTZ;7
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TAU Measurement Approach
e —— e

0 Portable and scalable parallel profiling solution
O Multiple profiling types and options
O Event selection and control (enabling/disabling, throttling)
O Online profile access and sampling
O Online performance profile overhead compensation

0 Portable and scalable parallel tracing solution
O Trace translation to OTF, EPILOG, Paraver, and SLOG2

O Trace streams (OTF) and hierarchical trace merging
0 Robust timing and hardware performance support
0 Multiple counters (hardware, user-defined, system)
0 Metadata (hardware/system, application, ...)
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TAU Measurement Mechanisms
—‘v
0 Parallel profiling

O Function-level, block-level, statement-level

O Supports user-defined events and mapping events

O Support for flat, callgraph/callpath, phase profiling

O Support for parameter and context profiling

O Support for tracking I/O and memory (library wrappers)

O Parallel profile stored (dumped, shapshot) during execution
0 Tracing

O All profile-level events

O Inter-process communication events

O Inclusion of multiple counter data in traced events
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Performance Analysis

B ——

0 Analysis of parallel profile and trace measurement

0 Parallel profile analysis (ParaProf)
O Java-based analysis and visualization tool
O Support for large-scale parallel profiles

Performance data management (74 Udb)

a 4

Performance data mining (PerfExplorer)

Parallel trace analysis

O Translation to VTF (V3.0), EPILOG, OTF formats

O Integration with Vampir / Vampir Server (TU Dresden)

0 Integration with CUBE browser (Scalasca, UTK / FZJ)
0 Scalable runtime fault 1solation with callstack debugging
0 Efficient parallel runtime bounds checking

J
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Performance Data Management

3d Provide an open, flexible framework to support common
data management tasks
O Foster multi-experiment performance evaluation

0 Extensible toolkit to promote integration and reuse across
available performance tools (PerfDMF)

O Supported multlple TAU Performance System
profile formats

. profile scalability .11
. ’ metadata analysis
TAU, CUBE, gprof, l l i

Performance Analysis Programs

. raw profiles Query and Analysns Toolkit Data Mining
mpiP, psrun, ... ﬁ}“ 5 ke
O SuppOI'ted DBMS . " gpmg (RS";a(t)I’s’:;( g\a)
* mpi T ‘ ‘
POSth’CSQL, MYSQL, :%Slglll;}[oolki[ : * + * +
Oracle DB2 - | ( Java PerfDMF API ] |
’ ’ L (SQL (PostgreSOL, MySOL, DB2, Oracle))

Derby, H2 L L
1 Re-engineer in TAUdb e~ Eﬁ 000 i
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TAUdb Database Schema
e

0 Parallel performance profiles
0 Timer and counter measurements with 5 dimensions
O Physical location: process / thread
O Static code location: function / loop / block / line
O Dynamic location: current callpath and context (parameters)
O Time context: iteration / snapshot / phase
O Metric: time, HW counters, derived values

0 Measurement metadata
O Properties of the experiment
O Anything from name:value pairs to nested, structured data

O Single value for whole experiment or full context (tuple of
thread, timer, iteration, timestamp)
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Performance Data Mining / Analytics
—

0 Conduct systematic and scalable analysis process
O Multi-experiment performance analysis
O Support automation, collaboration, and reuse
0 Performance knowledge discovery framework
O Data mining analysis applied to parallel performance data
> parametric, comparative, clustering, correlation, ...
O Integrate available statistics and data mining packages
» Weka, R, Matlab / Octave
O Apply data mining operations in interactive enviroment

O Meta-analysis based on metadata collection in TAU

> hardware/system, application, user, ...
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PerfExplorer Performance Data Mining

0 Programmable,extensible (" Data Components | (*Analysis Components
5
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alysis
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TAUdb Tool Support
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TAU Availability on New Systems

ﬁ
A Intel compilers with Intel MPI on Intel Xeon Phi'™ (MIC)

3 GPI with Intel Linux x86 64 InfiniBand clusters

0 IBM BG/Q and Power 7 Linux with IBM XL compilers

0 NVIDIA Kepler K20 with CUDA 5.5 with NVCC

0O Fujitsu Fortran/C/C++ MPI compilers on the K computer

1 PGI compilers with OpenACC support on NVIDIA systsems
0 Cray CX30 Sandybridge Linux systems with Intel compilers
a9 AMD OpenCL libs with GNU on AMD Fusion cluster

1 MPC compilers on TGCC Curie system (Bull, Linux x86 64)
0 GNU on ARM Linux clusters (MontBlanc, Beacon, Stampede)
3 Cray CCE compilers with OpenACC on Cray XK6, XK7

3 Microsoft MPI w/ Mingw compilers on Windows Azure

0 LLVM and GNU compilers under Mac OS X, IBM BG/Q
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Common Infrastructure Integration — Score-P
—_‘v

0 Community effort for a common tools infrastructure
O Starting with TAU, Periscope, Scalasca, and Vampir
O Open for other tools and groups
0 Joint development of Score-P
O Core performance measurement infrastructure
O MPI, OpenMP, heterogeneous
0 DOE-funded PRIMA project
O University of Oregon O
O Forschungszentrum Jilich 0 JOLICH
0 BMBF-funded SILC project (multiple partners)

TECHNISCHE ns TI_ITI
RWTH UNIVERSITAT @ it g

DRESDEN

FORSCHUNGSZENTRUM

Technische Universitat Minchen
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‘Score-P with TAU fI"n.tegratiofl: and Comiionents

7
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3 Score-P software architecture components

t t¢ +

Event traces Call-path profiles Online
(OTF2 format) (CUBE4 and TAU formats) interface

Memory management

Score-P measurement infrastructure
VN VN

Hardware counters

A A
i [ [ i

TAU

Compiler OPARI 2

instrumentor

Instrumentation

Target application (MPIl, OpenMP, hybrid, serial)
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NWChem Case Studies
e

0 NWChem i1s a leading chemistry modeling code
0 NWChem relies on Global Arrays (GA)
O Provides a global view of a physically distributed array
O One-sided access to arbitrary patches of data
O Developed as a library (fully interoperable with MPI)
0 Aggregate Remote Memory Copy Interface (ARMCI)
O GA communication substrate for one-sided communication
O Portable high-performance one-sided communication library

O Rich set of remote memory access primitives

0 Would like to better understand the performance of
representative workloads for NWChem on different platforms

O Help to create use cases for one-side programming models
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NWChem One-sided Communication and Scaling
B ———

0 Understand interplay between data-server and compute
processes as a function of scaling

O Data-server uses a separate thread

O Large numerical computation per node at small scale can
obscure the cost of maintaining passive-target progress

O Larger scale decreases numerical work per node and
increases the fragmentation of data, increasing messages

O Vary #nodes, cores-per-node, and memory buffer pinning

A Understand trade-off of core allocation

O All to computation versus some to communication

J. Hammond, S. Krishnamoorthy, S. Shende, N. Romero, A. Malony, “Performance
Characterization of Global Address Space Applications: a Case Study with NWChem,”
Concurrency and Computation: Practice and Experience, Vol 24, No. 2, pp. 135-154, 2012.
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NWChem Instrumentation

—ﬁ

0 Source-base mstrumentation of NWChem application
0 Developed an ARMCI interposition library (PARMCI)
O Defines weak symbols and name-shifted PARMCI interface
O Similar to PMPI for MPI
3 Developed a TAU PARMCI library
O Intervals events around interface routines
O Atomic events capture communication size and destination
0 Wrapped external libraries
0 BLAS (DGEMM)
0 Need portable instrumentation for cross-platform runs
O Systems
O Fusion: Linux cluster, Pacific Northwest National Lab

O Intrepid: IBM BG/P, Argonne National Lab

(Note: Runs on Hopper and Mira will scale greater, but will possibly show similar effects.)

ATPESC 2013 Perspectives on Performance Tools for Exascale: Experiences with TAU August 5, 2013



FUSION Tests Comparing No Pinning vs. Pinning

0 Scaling on 24, 32, 48, 64, 96 and 128 nodes
0 Test on 8 cores (no separate data server thread)

3 With no pinning ARMCI communication overhead increases
dramatically and no scaling 1s observed

0 Pinning communication buffers shows dramatic effects

0 Relative communication overhead increases, but not dramatically

eNoO TAU/PerfExplorer: Total TIME eSO TAU/PerfExplorer: Total TIME
Total TIME Bar Chart for NWChem:FUSION w4 ccs ptz 8 cores no Total TIME Bar Chart for NWChem:FUSION w4 ccs ptz 8 cores pin
B TIME
TIME 0 200 400 600 800 1000 1200 1400 1600
0 1,000 2,000 3,000 4,000 5000 6,000 7000 8,000 9,000 10,000

—
o
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256

256
384

384
512

512 768

Number of Processors

768

Number of Processors

1024 ||

(void armci_vapi_complete_buf(), 1024) = 324.614

1024
char *armci_ReadFromDirectSegment(), 1024) = 8,882.908 m CCSD_DOOOO = CCSD_DOVVV = CCSD_TENGCY DGEMM mHF2 = HFERI

INT_2E4C = MPI_Barrier() mSHIFTOL mT2ERI = T2ERI_WRK_NOEQ

u CCSD_DOVVV mCCSD_TENGY =DGEMM  HF2 mHFERI = MPI_Barrier() = SHIFTOL , 4 : .
= T2ERI WT2ERI_WRK_NOEQ ® char *armci_ReadFromDirectSegment() ® other char *armci_ReadFromDirectSegment() ®int PARMCI_GetS( ® other
void _armci_buf_complete_index() mvoid armci_rcv_strided_data() myoid armci_dscrlist_send_complete() ®void armci_send_complete()

®void armci_vapi_complete_buf() mvoid armci_util_wait_int() » void armci_vapi_complete_buf()
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Intrepid Tests Comparing No Pinning vs. Pinning

0 Scaling on 64, 128, 256 and 512 nodes
0 Tests with interrupt or communication helper thread (CHT)

O CHT requires a core to be allocated
0 ARMCI calls are barely noticeable
0 DAXPY calculation shows up more
0 CHT performs better in both SMP and DUAL modes

Total BGP_TIMERS Bar Chart for NWChem - HiPC: Total BGP_TIMERS Bar Chart for NWChem - HiPC:
w4_energy_ccsdpt_aug-cc-pvtz_essl_dcmf=0_nothread=0_smp w4_energy_ccsdpt_aug-cc-pvtz_essl_dcmf=1_nothread=0_smp
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=]
g 2
9 - s ————————— 8
9 = (=]
2 128 l E
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= 256 _ —
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£ 512 |
® CCSD_IDX1_WRK1 = CCSD_ITERDRV2 = CCSD_SXY CCSD_TENGY = MPI_Barrier()
® AOCCSD mCCSD_IDX1_WRK1 = CCSD_ITERDRV2 CCSD_SXY = CCSD_TENGY MPI_Recv() ® T2ERI_WRK_NOEQ = _WRAP_DAXPY m_WRAP_DGEMM
MPI_Barrier() ® MPI_Recv() m T2ERI_WRK_NOEQ ®_WRAP_DAXPY m_WRAP_DGEMM mint PARMCI_GetS() mint PARMCI_NbGetS() ® int PARMCI_Wait() mint _armci_accs()
®int PARMCI_GetS() ® int PARMCI_NbGetS() mint PARMCI_Wait() ® other mother
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Electronic Structure in Computational Chemistry

e

0 Parallel performance 1s determined by:
O How the application 1s design and developed
O The nature and characteristics of the problem

®
hY o gt
Bl
6 &

W/

Benzene Water Clusters = Macro-Molecules
0 Computational chemistry applications can exhibit:
O Highly symmetric diverse load (e.g., Benzene)
O Asymmetric unpredictable load (e.g., water clusters)
O QM/MM sheer large size (e.g., macro-molecules)

0 Load balance 1s crucially important for performance
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NWChem Performance Analysis —- NXTVAL
e ———

7 Focus on NXTVAL mean inclusive time

9150.436 | | NWCHEM
k 9146.966

TCE ENERGY

O Atomic counter keeping trac 5619.833 [ CCSD_ENERGY LOC
3371.58 L] NXTVAL

of which global tasks sent 1470.908 L] AGEMM

175.094 | TCE_SORT 4
0 Strong scaling experiment JNxvar
O 14 water molecules o

> aug-cc-PVDZ dataset
O 124 nodes on ANL Fusion

> 8 cores per node

O NXTVAL Signiﬁcant % 0 50 100 150 Nu;%(;rofg;%s 30(‘) 350 400

flooding
micro-benchmark |

: . L NXTVAL S

O Increasing per call time \\/ |

3 When arrival rate exceeds e
processing rate, buffering and it ]
flow control must be used T
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Evaluation of Inspector-Executor Algorithm

1y

3 How to eliminate the overhead |
of centralized load balance 1
algorithm based on NXTVAL [

Task Group Assignment

0d Use an inspector-executor

J;/%
approach to assigning tasks .

Task
Bucket

Task
Bucket

500 & T A . 5 . . "
O Assess task o sty s
imbalance - “
. Iterative Refinement Complete remaining iterations
O Reassign [ )

3 Use TAU to evaluate performance improvement with
respect to NXTVAL, overhead, task balance

D. Ozog, J. Hammond, J. Dinan, P. Balaji, S. Shende, A. Malony, “Inspector-Executor
Load Balancing Algorithms for Block-Sparse Tensor Contractions,” to appear in
International Conference on Parallel Processing, September 2013,
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Refinement from NXTVAL to Inspector/Executor
—

0 Original NXTVAL 1w ' ‘ ' -
measured - ~.”
MR

0 Original NXTVAL 10
reduced 067)

\0.10

O Inspector/Executor 100

0.81
I8t iteration overhead

\0.20

1.00

normalize iteration tim

0 Inspector/Executor
subsequent iterations

0.59

0 50 100 150 200
Process ID
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MPAS (Model for Prediction Across Scales)

B ——
0 MPAS is an unstructured grid

approaCh tO Climate SyStem mOdeling | Model for PredictionSAcross Scales

O Explore regional-scale climate change hup./mpas-dev.github.io

1 MPAS supports both quasi-uniform and variable resolution
meshing of the sphere

O Quadrilaterals, triangles, or Voronoi tessellations

0 MPAS 1s a software framework for the rapid prototyping
of single components of climate system models
O Two SciDAC earth systems codes (dynamical cores)

» MPAS-O (ocean model)
» CAM-SE (atmosphere model)
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MPAS-Ocean (MPAS-0O) Overview
B ——
0 MPAS-O 1s designed for the ayreEvw.
simulation of the ocean system :

from time scales of months to
millenia and spatial scales from
sub 1 km to global circulations

0 MPAS-O has demonstrated the
ability to accurately reproduce
mesoscale ocean activity with a
local mesh refinement strategy

0 In addition to facilitating the study
of multiscale phenomena within ocean systems, MPAS-O
1s intended for the study of anthropogenic climate change
as the ocean component of climate system models
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Multiscale and MPAS-O Domain Decomposition
B ——

A Use multiscale methods for accurate,
efficient, and scale-aware models of
the earth system

1 MPAS-O uses a variable resolution
irregular mesh of hexagonal grid cells

03 Cells assigned to MPI processes,
grouped as “blocks™

O Each cell has 1-40 vertical layers,
depending on ocean depth

0 MPAS-O has demonstrated scaling
limits when using MPI alone

0 Look at increasing concurrency

3 Developers currently adding OpenMP
O Both split explicit and RK4 solvers

ATPESC 2013 < . Perspectives on Perfo'rmance Tools for Exascale: Experiences with TAU < Augﬁst 5 2013



MPAS-Ocean Performance Study

ﬁ
1 Integrate TAU into the MPAS build system

O Evaluate the original MPI-only approach
O Study the the new MPI+OpenMP approach

A Performance results

O MPI block + OpenMP element decomposition

> Reduces total instructions in computational regions
> ~10% faster than MPI alone

O Guided OpenMP thread schedule balances work across threads
> ~6% faster than default

O Weighted block decomposition using vertical elements (depth)
could balancing work across processes (~5% faster in some tests)

O Overlapping communication and computation could reduce
synchronization delays when exchanging halo regions (underway)

0 Evaluation 1s ongoing and includes porting to MIC platform
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MPI Scaling Study (Hopper)

TIME Scaling

0 Strong scaling
0 192 to 16800

0 Poor scaling over
6144 processes

10410

Seconds - microseconds
=
>
=]

O Communication begins
tO dominate 0 2,500 5,000 7,500 10,000 12,500 15,000 17,50(

Total Processes

TIME Scaling, Timers Over 5% of Total Runtime

O Problem size might
be too small

0 Time profile by events

O Only MPI events > 5%
after 12K processes

Seconds - microseconds
>

1047

0 2,500 5,000 7,500 10,000 12,500 15,000 17,50¢
Total Processes
= MPI_File_write_all() <= MPI_Send() -+ MPI_Wait() se timestep = MPI_lrecv()
MPI_Wait() [THROTTLED] - se btr vel +adv -+ MPI_File_set_view()
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Benefits of RK4 solver and OpenMP Scheduling

0 Use modified RK4 solver versus original MPI solver

MPAS-Ocean MPI+OpenMP: worldOcean60km, RK4 on 64 cores

3 Test cases
O 64 cores § o /

Q
w 255
'

w 250 b == —

> 64 processes (MPI-only) o

» 32 processes x 2 threads S Q%
> 16 processes x 4 threads &
OpenMP Schedule
O 96 cores |+16x4p+e32x2 64x1]
MPAS-Ocean MPI+OpenMP: worldOcean60km, RK4 on 96 cores
» 96 processes (MPI-only) /)

» 48 processes x 2 threads 82 /
> 32 processes x 3 threads P .

> 16 processes x 6 threads

185

0 OpenMP scheduling options et Sehede

[+ 16x6 =32x3 +48x2  96x1]
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Benetits of Guided Scheduling with MPAS-O RK4

T —————
1 MPI + OpenMP experiment

O 96 cores (16 processes by 6 threads per process)
0 Default scheduling generates a load imbalance
O Threads arrive at boundary cell exchange at different times

O Complete boundary cell exchange at different rates
> only the master thread performs the exchange

0 Guided scheduling provides better balance

- OpenMP Barrier OpenMP Barrier
- W Tl | MPI ' N Ir"/ MPI- Wait
—— \\‘\\‘ “| | 4’!/ | _Waltj  EE ‘\“““1‘\‘" G -

0 i ‘

VSO
P S

Default ‘A -, e Guided
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MPAS-O on BG/Q (Vesta) on 16K (256x64)

MPI Wait() master thread
halo exchanges

328.552
246.414

164.276
il
i

AG .44 (
e

il

164 . 270

e
=

s,

ol °( )penMP worker threads

) executing solver routines,
including time spent waiting
on halo exchanges by
master threads
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XGC for Studying Critical Edge Physics

0 XGC 1s a set of codes to modelgyrokinetic microturbulence in
the simulation of fusion reactors

O DOE SciDAC for Edge Physics Simulation (EPS1)
O Particle-in-cell (PIC) codes:
> XGCO, XGC1, XGCla, XGC2, ...

0 XGCl1

O ODE-based PIC approach on space
grid using unstructured triangular grid

O 5D gyrokinetic equations
> ODE: time advance of marker particles

> finite difference: partial integro-differential Fokker-Planck collision
operator discretized on rectangular v-space grid

> PDE (PETSc): Maxwell’s equations on unstructured triangular x-
space grid
O Usual interpolation 1ssue exists
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XGC1 Development and Performance

B ——

0 Development of electromagnetic turbulence capability
O Requires more accurate calculation of electrical current
O More particles requires greater scaling

0 Challenge to run XGC1 on heterogeneous systems (Titan)

O Electron subcycling time-advance takes ~85% of total time
> designed to be without external communication in each cycle
> 1deal for occupying GPUs while other routines use CPUs
> solver spend <5% of total computing time

O Weak scaling in number of particles
» XGC1 has not reach the MPI communication limit
> #particles per grid-node is fixed
> #grid-nodes memory determined by compute-node memory
» need more compute nodes
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XGC1 Performance Study (Titan, ACISS)

B ——
0 EPS1 with DOE SUPER i1nstitute 1s optimizing XGCl1

O Computational kernel including port to GPU
O OpenMP parallelism
O MPI communication
0 Use TAU to investigate XGC1 performance questions:
O How to efficiently split work between the CPU and GPU
O How to improve the cache performance in the GPU
O Effects of memory copying with multiple GPUs per node
0 Experiments done on ACISS and Titan
O ACISS: 12-core 2.67GHz Xeon X5650 / Tesla M2070 (3x)
O Titan: 16-core 2.2GHz Opteron 6274 / Tesla K20X
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XGC Work Sharing Between CPU and GPU (ACISS)
e ——

0 Look at CPU+GPU worksharing execution scenario

0 Electron 'push’ takes 85% of the computation time
O Kernel (pushe?) was ported to the GPU

0 Assigning more work to the GPU can shorten the
execution since it can compute the kernel faster

Metric: TAUGPU_TIME [ 50% - Mean -
Value: Inclusive B c0% - Mean
Units: seconds O 70% - Mean 0.398 |
— SR, Ddrei17400 |
90% - Mean : ‘ '
B 005 - 1 oan 0.787 (197.865%) | cuCtxSynchronize
14.979 (3765.797%) I:I
162.907 | | 29,108 (7318.103%) [

132.856 (81.553%) (I
103.478 (63.52%) | |

74.191 (45.542%) [ — TAU application

71.714 (44.021%) | | 4693 [
73.235 (44.955%) 5.715(121.786%) §
143.757 | | 6.743 (143.679%) [ pushe_kernel _gpu
7.742 (164.985%) B
114313 (79.518%) [ 8,687 (185.11%) [
84.885 (59.048%) | | '
55,424 (38.554%) — CPU_work 9.66 (205.857%) |

26.803 (18.644%) [l
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XGC Cache Optimization (ACISS) |
e
0 Shared memory capacity
O L1 cache and device shared memory share physical storage

O Default: 48KB shared memory / 16KB L1 cache

O CUDA allows you to swap this allocation
O Improved the performance of the pushe2 kernel (~20%)

[l »

O Improved the performance of XGC application (~17%)

84.551 |
11.91 |
9,403 (78.952%) pushe_kernel _gpu
. August 5, 2013

ParaProf: Comparison Window
File Options Windows Help
Metric: TAUGPU_TIME ngc2_reference - Mean
Value: Exclusive B xcc2 prefer 11 - Mean
Units: seconds
| _—
53,506 (53, 154%) | FEF}RIERE}RETETETYTNY (AUapplication
14.831 | |
11,754 (79.249%) mmm—
12.955 | |
11.037 (85.192%) MPI_Allreduce()

Perspectives on Perfo'rmance Tools for Exascale: Experiences with TAU
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Memory Copies with Multiple GPUs in XGC

B ——
0 Given multiple GPUs per node in ACISS

O XGC could be run with multiple MPI ranks per node
O Each rank would be assigned 1 GPU
3 How do CPU-GPU memory copies affect performance?

O Compare
» 1 MPI rank per node with 1 GPU
> 3 MPI ranks per node with 3 GPUs

O Slow memory copies result with multiple ranks+GPUs
0 Slow memory copies can lead to MPI waiting

O Leads to a slow down in MPI collectives
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XGC Performance with Different # GPUs (ACISS)

3 3 MPI ranks

O 3 GPUs per
node (6 seconds)

O Slow memory
copies ...

O ... cause faster
MPI ranks to stall
at MPI Reduce

0 3 MPI ranks (different nodes)

O 1 GPU per node
(4 seconds)

O Fast memory copies
better aligns processes
and reduces MPI stalls
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XGC MPI Imbalance Due to PCI Bus Sharing
B ——

3 16 ACISS nodes

O 3 GPUs per

node (6 seconds) ULl e e IR | Bl s
H- .

=

a3 Slow memory
copies ...

NI e el BE O BE) B e
FE—— ..
Bl .l .
i
miEe _Ee i aein iEees ES
I
I e
-
NI B e Eeae B B
B S| RN

L min i el Bl
- 1 —

An im0 —

iiﬁ%

WMMHM i
I3

it
-

3 ... cause faster
MPI ranks to stall
at MPI Reduce

——

{
1
{

ziiii=

|

e

|
|

e m——
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Heterogeneous Performance Measurement (Titan)

0 CPU+GPU worksharing execution scenario

Metric: TAUGPU_TIME
Value: Exclusive
Units: seconds

82.498 .TAU application
53.885 [ | CPU_Work
10.103 [ cuStreamSynchronize CPU Events
5.973 [L] MPI_Allreduce()
Computation Kernels
63.97 | | pushe_kernel_gpu

32.11 [ TAU application GPU Events
1.163 [| Memory copy Host to Device

0.447 I Memory copy Device to Host

Memory Copy
Events

2.2429E7 sl Bytes copied from Device to Host
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XGC Increasing Grid Size (Titan)
e ——— N
0 Allocating a larger grid to improve GPU efficiency

Metric: TAUGPU_TIME |:|64x1x1 Grid - Mean

Value: Exclusive B 384x1x1 Grid - Mean
Units: seconds

63.949 |

3573 (53,175 ) e pUshe Kemnel_gpu

Metric: [J64x1x1 Grid - Mean
CUDA.Tesla_K20X.domain_ [l 384x1x1 Grid - Mean
d.active_cycles_(averaged)_

(upper bound)

Value: Exclusive

Units: counts

1.9163E13 |

| he_Kernel
16329E13 (85.207%) I

0 Larger grid size increases the number of active cycles by
15% and leads to a 5% increase 1n total SM efficiency
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XGC1 Performance Scaling on Titan

ﬁ

< < XGC1 Performance: Weak Particle Scaling on DIIl-D grid
D 1 - C O a Ora lon (10 ion timesteps, 3.2 million ions and 3.2 million electrons per node)
3000 ,
Cray XK7 (1 16-core proc 1GPU per node)
16 MPI tasks per node (Jan. 2013)

0 Weak scaling on DIII-D grid e o

1 MPI task, 16 threads per node —«—

1 MPI task, 16 threads, 1 GPU per node —e=—

O 10 10n timesteps

O 3.2 million 1ons S //{,ﬂ
O 3.2 million electrons per node CPUSGPU with workpad tuning |

|

O | o Ve
n
§ L
o

0 Ran 512 node experiment J_L || (sl #itanjcore; —

0 2000 4000 6000 8000 10000 12000 14000 16000 1800

Compute Nodes

MPI_Alireduce()

17.51|

4. 6.433  7.076
Exc usive TAUGPU TIME ( sssss ds)
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IRMHD Performance on Argonne Intrepid and Mira

0 INCITE magnetohydrodynamcis simulation to understand solar
winds and coronal heating

O First direct numerical simulations
of Alfvén wave (AW) turbulence
in extended solar atmosphere
accounting for inhomogeneities

O Team

> University of New Hampshire (Jean Perez and Benjamin Chandran)
» ALCF (Tim Williams)
» University of Oregon (Sameer Shende)

0 IRMHD (Inhomogeneous Reduced Magnetohydrodynamics)

O Fortran 90 and MPI HPGore==
O Excellent weak and strong scaling properties ~; f-fig;:’gr;’c'ljl;rs??sking

O Tested and benchmarked on Intrepid and Mira
1 HPC Source article and ALCF news

https://www.alcf.anl.gov/articles/furthering-understanding-coronal-heating-and-solar-wind-origin
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Communication Analysis (MPI Send, MPI Bcast)
—

0 IRMHD demonstrated performance behavior consistent
with common synchronous communication bottlenecks

O Significant time spent in MPI routines

0 Identify problems on a 2,048-core execution on BG/P
O MPI Send and MPI Barrier

MPI Bcast took : /7:<

significant time

O Suggest possible » 2
opportunities for T o MPI Send
overlapping |
computation and communication

O Identified possible targets for computation improvements
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Effects of IRMHD Optimizations
B e

0 Developed a non-blocking communication substrate

d Deployed a more efficient implementation of the
underlying FFT library

eno ParaProf: Comparison Window
. Metric: TIME = IRMHD_BGP_original.ppk - Total
Value: Inclusive [l IRMHD_BGP_comm_optimized.ppk - Total
D ‘; era e x eC | Ith I I Units: hour:minute:seconds ] IRMHD_BGP_comm_fft_optimized.ppk - Total

528:11:46.595 | m
° 271:56:13.956 (51.484%) | NN REFLECT |
time reduced from T TS |
448:10:0.787 )

e ]
265:17:47.832 (59.196%) |l  ADVANCE_ONE_SNAP

528.18 core hours to e e

229:07:47.7 (99.163%) [— DERIVE
30:29:44.389 (13.198%) [

70.85 core hours e JO

0:18:21.092 (0.173%)
134:32:11.88 [T

125:45:28.562 o]

(>7x improvement) for .
a 2,048_processor - | MP[_Seflbd()
execution on Intrepid TS

124:54:20.196 (99.373%) [l CCHEBYB
14:16:52.014 (11.362%) [

100:26:57.17 ]

D Further improvement 98:49:36.???2(ﬁiﬁ?g?]uﬁ MPIFFT::CHEBYF

100:23:55.809 ]
98:46:33.474 (98.384%) [ CCHEBYF

On Mira o o o 11:25:9.62 (11.374%) [
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Mira (BG/Q) Performance
e

0 Test with 32K MPI ranks
0 Load imbalance apparent

O See imbalance reflected in MPI Alltoall() performance
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Optimizations on Mira g g g

0 Remove MPI Barrier in regions where not needed

e 00 ParaProf: Comparison Window
Metric: BGQ_TIMERS [E IRMHD_M1024_np16.ppk - Total
Value: Inclusive [l IRMHD_M1024_np16_nobarrier.ppk - Total

Units: hour:minute:seconds

1785:04:34.668 [ -
1686:50:38.352 (94.497) | CLFLECT [ireflect_tau.f90} 31,1}-{161,19]

1776:32:52.394 |l -
1675:23:12.196 (94.306%) 1y  \/\\CE_ONE_SNAP [{advance_one_snap.f90} {1,1}-{74,31]]

1213:19:38.455 el - -
947.08:44.826 (75.062%) —— RK3NL::ERK3_STAGE [{rk3nl.f90} {15,3}-{58,27}]
1172:02:58.482 i -
906:32.20.856 (77.346%) I —— WDERIVS [{wderivs.f90} {1,1}-{75,22}]
554:05:43.643
420:34:10.809 (75.902%)
494:20:20.375 [l
364:39:46.287 (73.768%) [——

437:23:48.003 [l
426:10:10.582 (97.433%) E—

318:46:52.519 [l . ; -
194:25:30.315 (60.99%) MPIFFT::BP_TRANSPOSE_COMPLEX [{mpifcheby_fftw.f90}{390,3}-{399,37})

307:12:55.045
312:58:22.747 (101.874%) il " - 02110

MPIFFT::RCFFT2D_MPI [{mpifcheby_fftw.f90} {401,3}-{442,28})
MPIFFT::CRFFT2D_MPI [{mpifcheby_fftw.f90} {444,3)}-{478,28})

DERIVE [{diff.f90} {1,1}-{60,21}]

309:07:31.593 [l . - ;
178:03:14.888 (57.599% B M T FP-TRANSPOSE_COMPLEX [{mpifcheby_fftw.90} {366,3}-{375.37}]

80:41:46.144 &
275:58:58.669 (342.003%)

275:53:14.204 [ .
0:12:30.275 (0.076%) | MPI-Barrier0

ENERGY [{energy.f90} {1,1}-{260,21}]

A Next, oversubscribe nodes ...
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Oversubscribing Mira Nodes
T
0 Vary #MPI ranks on nodes (1024 nodes)

O 16 ranks per node (16K) versus 32 ranks per node (32K)

D Overall time 8.00 ParaProf: Comparison Window

Metric: BGQ_TIMERS O /Users/sameer/rs/taudata/irmhd/mira/IRMHD_M1024_np16.ppk - Mean
. Value: Inclusive M /Users/sameer/rs/taudata/irmhd/mira/IRMHD_M1024_np32.ppk - Mean
lmprovement Units: seconds [ /users/sameer/rs/taudata/irmhd/mira/IRMHD_M1024_np32_nobarrier.ppk - Mean

392.229
287.342 (73.259%) ﬁ REFLECT [{reflect_tau.f90}{31,1}-{161,19}]

O 7 1 23% Of 279.402 (71.235%) |

390.355
285.375 (73.107%) | —] ADVANCE_ONE_SNAP [{advance_one_snap.f90}{1,1}-(74,31}]

Orlglnal 275.615 (70.606%) ]

266.6
206.294 (77.379%) (" RK3NL::ERK3_STAGE [{rk3nl.f90}{15,3}-{58,27}]
. 178.138 (66.818%) ]

A3 More efficient B —

200.253 (77.759%) [ WDERIVS [{wderivs.f90} {1,1}-{75,22}]

. . . 172.076 (66.818%) |

barriers within
91.501 (75.155%) [l MPIFFT::RCFFT2D_MPI [{mpifcheby_fftw.f90} {401,3}-{442,28}]
77.191 (63.402%) [

node leads to w08 519 S

84.232 (77.547%) [ MPIFFT::CRFFT2D_MPI [{mpifcheby_fftw.f90} {444,3}-{478,28}]
71.706 (66.016%) [l

performance 63.695 ?666.120784%) B DERIVE [{diff.f90} {1,1}-{60,21}]

63.657 (66.235%) [l

improvement 69.708 (103?276.5569/?) % MPI_Alltoall()

70.118 (103.874%)

70.045
54.023 (77.126%) [ MPIFFT::BP_TRANSPOSE_COMPLEX [{mpifcheby_fftw.f90}{390,3}-{399,37}]
42.66 (60.904%) [l
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Performance Variability in CESM

0 Community Earth System Model (CESM)
0 Observed performance variability on ORNL Jaguar

O Significant increase 1n execution time led to failed runs

0 End-to-end analysis methodology

Application

O Collect information from all oyotom .:2::.’.12?.'.‘:.‘.1 o
production jobs s / Guenes
» modify jobs scripts system \. - — Job.
Capability Performance Allocation
> problem/code provenance, i
Multi- ' s
system topology, system E:::rliyl:;nt

workload, process node/core | _,__;,"_
mapping, job progress, time = A= - _Ej

spent 1n queue, pre/post, total
O Load in TAUdb, qualtify nature of variability and impact
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Example Experiment Case Analysis

—-‘v

D 4 0 9 6 prO C e S S OI’ Core S CESM Performance Variability (Total Time)

25000 T T T T T T T

O 6 hour request woo| = L. .l

O Target: 150 simulation days —§ wm| ™" P I AL PR
3 35 jobs £ o ﬂ

Cray XK6 (1 sixteen-core processor per node)
T341f02.F1850r for 150 simulation days

5000 | 4096 processor cores (512 processes, 8 OMP threads)
O ay - un ’ Components stacked

Completed within 6 hour time limit L]
Excgeded timel limit (estirnated corrllpletion tirpe) L

o TWO Of WhiCh failed ’ ) 0 Ex;:riment N?.l(:nber * % %

CESM Performance Time Series (Run Loop)

T T T T T T
Mll’llmum exeCufZOH tlme Maxtmum €X€CMIZOI’Z tlme Cray XK6 (1 sixteen-core processor per node)
1400 - T341f02.F1850r, Components Stacked 7
4096 processor cores (512 processes, 8 OMP threads)
Failed Run (140 Simulation Days) —s—
1200 A Failed Run (145 Simulation Days) —e— |

Slowest Successul Run (150 Simulation Days) =——e—
Second Slowest Successul Run (150 Simulation Days)

800 (‘/ N //\\___. \\'\\( A\\ A\/
600 ~ % \-—-—-—:';\,‘Xﬂ/ oY

T

Runtime for Previous 5 Simulation Days (seconds)

400
200 Hioh variabilitv intra-ru;
.’o Lo Vv L A Sy & 2 VJ L 4 v v (4 v
1]
0 20 40 60 80 100 120 140

Simulation Day

ATPESC 2013 Perspectives on Performance Tools for Exascale: Experiences with TAU August 5, 2013



TAUdb and CCSM Data — Mismatched Nodes
e ——
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“Extents of Gemini Network Matter =
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MPI Rank Placement Matters Too
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Autotuning is a Performance Engineering Process

B ——

0 Autotuning methodology incorporates aspects common to
“traditional” application performance engineering

O Empirical performance observation
O Experiment-oriented

0 Autotuning embodies progressive engineering techniques
O Automated experimentation and performance testing
O Guided optimization by (intelligent) search space exploration
O Model-based (domain-specific) computational semantics

0 However, autotuning 1s based on optimization and search,
not performance diagnosis

0 There are shared objectives for performance technology
and opportunities for tool integration
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TAU Integration with Empirical Autotuning
—

3 Goal 1s to integrate TAU with existing autotuning frameworks
O Use TAU to gather performance data for autotuning/specialization

O Store performance data with metadata for each experiment variant
and store in performance database (TAUdb)

O Use machine learning and data mining to increase the level of
automation of autotuning and specialization

0 Autotuning components
O Active Harmony autotuning system (Hollingsworth, UMD)
> software architecture for optimization and adaptation
O CHiLL compiler framework (Hall, Utah)

» CPU and GPU code transformations for optimization

O Orio annotation-based autotuning (Norris, ANL)
> code transformation (C, Fortran, CUDA) with optimization
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Autotuning Integration (CHIiLL + AH)

Measurement

* Parameter profiling

* TAUdb storage
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Autotuning with TauDB Methodology
——

0 Each time the program executes a code variant, we store
metadata in the performance database indicating by what
process the variant was produced:

O Source function
O Name of CHILL recipe
O Parameters to CHi1LL recipe

0 The database also contains metadata on what parameters
were called and also on the execution environment:

O OS name, version, release, native architecture

O CPU vendor, ID, clock speed, cache sizes, # cores
O Memory size

O Any metadata specified by the end user
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Learning Performance Specialization

0 Apply machine learning to data stored in TAUdb
O Generate decision trees based upon code features

void matmult(float **c, float **a, float **b, int L, int M, int N)
parameterize using L, M, N

) 7 \
@ @ cache_size
<32kB
~a
10 10 >32kB
J 20 ‘ 20
y by l

code variant code variant code variant code variant code variant 10 20

1 2 3 4 5
code variant
6

.
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Decision Code Generation to Effect Specialization

0 Use a ROSE-based tool to generate |
a wrapper function o

O Carries out the decisions 1n the ot gt
decision tree and executes the best
code variant

0 Decision tree code generation tool

takes Weka-generated decision \ ’@

WEKA

tree and a set of decision functions  “icien”

O If using custom metadata, user ROSE based
needs to provide a custom decision Generation
function s

O Decision functions for metadata l

automatically collected by TAU
are provided

Wrapper Function
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Orio

3 Orio 1s an annotation-based empirical O. I'o
performance tuning framework

0 Source code annotations allow Orio to generate a set of
low-level performance optimizations

O After each optimization (or transformation) 1s applied the
kernel 1s run

O Set of optimizations is searched for the best transformations
to be applied for a given kernel

0 First effort to integrate Orio with TAU was to collect
performance data about each experiment that Orio runs

O Move performance data from Orio into TAUdb
O Orio reads from TAUdb
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TAU's GPU Measurement Library

—_—
3 Focused on Orio’ s CUDA

kernel transformations oo oo Genoratr

O TAU uses NVIDIA’s
CUPTI interface to gather
information about the GPU S— || Suecaoace
execution -

O Memory transfers TAU etadal Ens

Transformations
O Kernels Wites
> runtime performance

Writes
\/

[ TAU Profiles W

\4 \4

Execution Time

ab——

Uploaded

> performance attributes W
TAUdb
O GPU counters

T
0 Using the CUPTI interface does not require any
recompiling or re-linking of the application
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ORIO data in TAUdb / PerfExplorer |
I ——
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Performance Observability for Exascale

B ——

0 The first person approach 1s problematic for exascale use

O Highly concurrent and dynamic execution model
> post-mortem analysis of low-level data prohibitive

O Interactions with scarce and shared resources
> Introduces bottlenecks and queues on chip/node and between nodes
O Multiple objectives (performance, energy, resilience, ...)

O Runtime adaptation to address dynamic variability
0O Third person measurement model (in addition) required

O Focus 1s on system activity characterization at different levels
> system resource usage is a primary concern

O Measurements are analyzed relative to contributors

O Online analysis and availability of performance allows
introspective adaptation for objective evaluation and tuning
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Exascale “Performance” Observability

B ——

0 Exascale requires a new, fundamentally different
“performance” observability paradigm

O Designed specifically to support introspective adaptation
O Reflective of computation model mapped to execution model

O Aware of multiple objectives (“performance”)

> system-level resource utilization data and analysis, energy
consumption, and health information available online

0 Key parallel “performance” abstraction
O Inherent state of exascale execution 1s dynamic
O Embodies non-stationarity of “performance”

O Constantly shaped by the adaptation of resources to meet
computational needs and optimize execution objectives
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Idea — Integration in Exascale Software Stack

ﬁ

0 Exascale observability framework can be specialized through
top-down and bottom-up programming specific to application

0 Enables top-down application transformations to be optimized
for runtime and system layers by feeding back dynamic
information about HW/SW software resources from bottom-up

0 Exascale programming methodology can be opened up to
include observability awareness and adaptability
O Programming system exposes alternatives to the exascale system

> parameters, algorithms, parallelism control, ...

O Runtime state awareness can be coupled with application
knowledge for self-adaptive, closed-loop runtime tuning

> richer contextualization and attribution of performance state

0 Performance portability through dynamic adaptivity
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